PHYSICAL REVIEW E

VOLUME 49, NUMBER 3

Two-dimensional nonlinear dynamics of four driven vortices
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The interaction of four alternately driven counterrotating vortices in a two-dimensional box, with in-
penetrable free-slip boundary conditions in the x direction and periodic boundary conditions in the y
direction, has been studied numerically. For viscosity above a critical value the nonlinear state consists
of four alternately counterrotating vortices. For a lower value of the viscosity the system evolves to a
nonlinear steady state consisting of four vortices and shear flow generated by the “peeling instability”
[Drake et al., Phys. Fluids B 4, 447 (1992)]. For a still lower viscosity the steady-state nonlinear state
undergoes a Hopf bifurcation. The periodic state is caused by a secondary instability associated with
vortex pairing. However, the vorticity of the shear flow, though periodic, has a definite sign. With a fur-
ther decrease in the viscosity, a global bifurcation gives rise to a periodic state during which the vorticity
of the shear flow changes sign. At even lower viscosity, there is a transition to a steady state, involving
dominantly shear flow and a two-vortex state. Finally, this state undergoes a bifurcation to a temporally
chaotic state, with the further decrease of viscosity. The results are compared to some recent experi-
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ments in fluids with driven vortices [P. Tabeling et al., J. Fluid Mech. 215, 511 (1990)].

PACS number(s): 47.15.Gf, 47.20.Ky, 47.20.Ft, 47.27.Pa

I. INTRODUCTION

Generation of convective cells in fluids and plasmas is
a ubiquitous phenomenon. In environments as diverse as
the turbulent sun [1], on one hand, and a simple heated
fluid in a laboratory [2] in the presence of gravity, on the
other, Rayleigh-Bénard convection cells are readily
driven. The nonlinear fate of these cells is, however,
dependent on the details of the geometry and the value of
the dimensionless parameters, such as the Rayleigh num-
ber, the Prandtl number, and the elongation of the vor-
tices for the fluid in question. However, the nonlinear
evolution causes drastic local modification of the source
of the instability, namely, the temperature gradient, lead-
ing to a complex interplay between the nonlinear mode
coupling and the source modification. There are, howev-
er, comparatively simpler physical systems, in which the
source is unaltered by the nonlinear evolution. For such
systems, the nonlinear evolution is dominated by mode
coupling rather than profile or source modification. The
present work is motivated by these systems.

The simpler systems referred to above are those in the
experiments reported in [3-7], in which a periodic array
of alternate, counterrotating, two-dimensional vortices
are driven by electromagnetic forcing. By passing a
current through a cell containing a normal solution of
sulfuric acid and an array of permanent magnets of alter-
nating polarity at the bottom of the cell, the Lorentz
force stirs the fluid, producing the vortices. The two
dimensionality of the flow is ensured by restricting the
thickness of the fluid.

The basic results of the experiments for four counterro-
tating vortices can be summarized as follows. At low
currents, which corresponds to weak forcing and hence
low Reynolds number, the flow is a linear array of coun-
terrotating vortices [4]. This stable state becomes unsta-
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ble beyond a critical current. The linear array is now
comprised of nonuniform tilted vortices, alternately large
and small. A further increase in the current enhances the
tilt and makes the large vortices larger and the alternate
smaller vortices even smaller. A further increase in the
current leads to a state with half the number of corotat-
ing vortices as compared to the initial state. Beyond this
point, any increase of the current leads to time-dependent
states [5]. First a supercritical Hopf bifurcation occurs.
At a value of the current equal to three times the value
when the Hopf bifurcation occurred, a sequence of
period-doubling bifurcations occurs, followed by a transi-
tion to temporal chaos.

In recent papers [8,9], an analytic as well as numerical
study of two driven, counterrotating vortices was under-
taken. It was shown that for large viscosity (or weak
forcing) the nonlinear state was comprised of two period-
ic counterrotating vortices. A decrease in the viscosity
led to an instability that caused the vortices to tilt. Also,
one vortex was larger than the other. The cause of the
tilt was an instability that generated shear flow. The
larger vortex had the same vorticity as the shear flow,
while the smaller one was counterrotating. A further de-
crease in the viscosity led to a state in which only a single
vortex survived and was embedded in shear flow. A fur-
ther decrease in the viscosity only led to a decrease in the
size of the single vortex, relative to the strength of the
shear flow. All the nonlinear states were time indepen-
dent.

In the present work we have studied the stability and
nonlinear evolution of four driven, alternately counterro-
tating vortices. We present the equations and a brief
description of the numerical scheme used in our investi-
gation in Sec. II. In Sec. III the analytical and numerical
results are presented. Finally in Sec. IV we compare our
results to those of the experiments.
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II. BASIC EQUATIONS

The two-dimensional isothermal Navier-Stokes equa-
tions are used. They are

90 Lo v)=

% +¥-(pv)=0 (1)
and

%(pv)+v-(pvv)=—CSZVp+vV2v+F , @)

where F is an external forcing function, p is the mass
density, c, is the speed of sound, and v is the viscosity.
The boundary conditions are periodic in y with period L,
and impenetrable, free-slip conditions at x =0 and L,,
ie, v,=0 and Odv,/dx =3dp/3x=0. The two-
dimensional code we have used for the present study was
developed for the earlier work reported in [8,9]. In-
compressibility (V-v=0) is ensured by making v/c; <1
such that p remains nearly constant in space and time, if
initially it is assumed to be uniform. As a consequence
the velocity can be written in terms of a stream function

as v=—V¢Xz and the equation for the vorticity is
o=2z-VXv,
%%+v-Vw=yV2w+S , 3)

where u=v/p and S =( l/f)VXF. The flow remains in
equilibrium for S =puA*$, where A’=(2m)%(1/L?
+16/L}).

In our present work the length scales are normalized to
L, and the time scales are normalized to L, /c,. The
normalized viscosity is u/c,L,, and |v|™*, the maximum
value of the x velocity for the initial equilibrium flow, is
chosen to be equal to 0.1c;. We hasten to remind the
reader that the Reynolds number is not |v|™*L, /u. This
is because the maximum velocity that develops in the
simulation is much lower than the initial velocity 0. 1c,
and systematically decreases with the decrease in viscosi-
ty. Also the acoustic velocity is used merely for the pur-
pose of normalization and does not in any way influence
the results presented in this paper. It appears because we
are using the compressible equations (1) and (2) (though
ensuring incompressibility as mentioned above) rather
than the incompressible vorticity equation (3). Although
the compressible equations require a smaller time step (a
factor of 10 for v /c;=0.1) compared to solving Eq. (3),
they have the advantage of being completely vectorizible.
Also they do not have the disadvantage, as do the in-
compressible equations, of having to solve a Poisson
equation to obtain ¢ from w.

III. NUMERICAL RESULTS

We now discuss the results obtained using our numeri-
cal code. There are basically two dimensionless parame-
ters in the problem: L, and u. L,=2.0 has been chosen
for all the results presented in this paper. We have fo-
cused on investigating the change in dynamical behavior
of the four vortices as we vary the viscosity. For most of
the runs, the number of grid points in the x direction is
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n, =31 and the number in the y direction is n,=61. For
the lower viscosity runs we have increased the spatial
resolution by a factor of 2 to ensure that the results are
not affected by the grid size. The scalar potential for the
four vortex case can be written as

¢=dysin(7x)sin(27y /L,) . 4)

In Fig. 1(a) we show the stream function and the vorti-
city for u=10"2. There are four alternately counterro-
tating vortices in steady state. The vortices are of equal
strength. The vorticity contours are identical to the
stream function contours. As the viscosity is reduced to
4.2X 1073 [Fig. 1(b)], an instability develops which leads
to the generation of shear flow. The consequence of this
flow is that the vortices are tilted and those which have
the same vorticity as the shear flow are now larger than
those with the opposite vorticity. The generation of this
flow has been studied in detail in Refs. [8] and [9]. As
found earlier, the instability is inviscid or dissipative de-
pending on the elongation of the vortices. The inviscid
growth rate for the generation of shear flow by 2m alter-
nately counterrotating vortices is

2_72
3[m*—Ly]

, (5)
4[m*+L}]

77:
where ¥ is the normalized growth rate, which is defined
as yL, /4m*¢,. The perturbations used in obtaining this
dispersion relation were assumed to have a time depen-
dence given by exp(yt). This result is a straightforward
extension of the four-mode theory given in Refs. [8] and
[9]. For the four-vortex case, m =2 and since L, =2, the
inviscid mode is marginally stable. Thus the instability
we observe occurs only in the presence of viscosity, be-
cause small yet finite viscosity relaxes the constraint of
perfect conservation of vorticity. Again a theory based

(b)

(o)

FIG. 1. Contours of the stream function and vorticity for (a)
p=10"2,(b) u=4.2X 1073, and (c) p=3X1073.



2064

on the four-mode model with viscosity, of Ref. [9] [Eq.
(11)], can readily yield the growth for the viscous mode.
We remind the reader that the validity of the truncation
to four modes is ensured only for ideal modes or for
viscous modes with large viscosity. By large viscosity we
mean those values of viscosity for which the dissipation
scale lengths are comparable to the box size. A further
reduction in the viscosity down to a value of
©=3.0X1073 [Fig. 1(b)] causes the shear flow to in-
crease. Also the smaller vortices are completely absent.
The contours for the stream function in Fig. 1(c) show
that there are half as many vortices as the initial state
and these are corotating. As discussed in detail in our
earlier work, once the counterrotating four-vortex solu-
tions become unstable to the shear flow, the O point asso-
ciated with the smaller vortices bifurcates into an X point
and two smaller O points which are rapidly dissipated at
the boundary leaving two O points and two X points
which are responsible for the island structure seen in
Figs. 1(b) and 1(c). As a consequence the size of these is-
lands in the periodic direction is twice the size of the ini-
tial vortices. Again these results are in agreement with
the earlier two-vortex study (Refs. [8] and [9]) and with
the experimental observations reported in Ref. [5].

What determines the sign of the vorticity of the shear
flow? In the results presented above, a small seed for the
shear flow was introduced initially. Had we chosen a
seed with the opposite parity the vortices would have
been tilted by the shear flow with negative vorticity.
Thus there are two degenerate states, one for which the
shear flow has positive vorticity and one for which the
vorticity is negative. Since the equations and boundary
conditions are symmetric, about x =, in the absence of
a seed, the symmetry breaking would occur through
machine noise or a finite difference scheme which does
not preserve the symmetry inherent in the equations.

So far the results are similar to the earlier results for
the two-vortex case, the only difference being that in this
study there are four counterrotating vortices instead of
two. In the two-vortex case [9] any further reduction in
the viscosity leads to a decrease in the island width and
an increase in the relative strength of the shear flow. In
fact, at very low viscosity the presence of the vortex is-
land is hardly discernible in the contour plots for the
stream function. However, for the four-vortex case the
behavior is very different for viscosity lower than
3.0X 1073 In Figs. 2(a)-2(c) we show the stream func-
tion and the vorticity at three different instants of time
for u=2.75X1073. The first frame shows the initial con-
dition (¢ =0). The second frame at # =1000 shows the
state very similar to that in Fig. 1(c), where two tilted
corotating vortices embedded in a shear flow are in
steady state. However, after a significant time a secon-
dary instability develops which causes the system to
evolve to a state having an admixture of four- and two-
vortex, and shear flow. The secondary instability is the
well-known pairing instability [10-12] of corotating vor-
tices. In the two-vortex case this secondary instability
cannot occur. This instability requires at least two coro-
tating cells, and in the two-vortex case there is only one
such cell in the periodic box. For point vortices of equal
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FIG. 2. Contours of the stream function and vorticity for
p=2.75X10"*at (a) t =0, (b) t = 1000, and (c) ¢ =8000.

strength the pairing instability leads to a rotation of the
vortices around the common vorticity centroid [10].
However, in the present case, since the vortices are of
finite size, there is also the possibility of merging or
coalescence of the vortices [11,12]. This merging can
happen if the distance between the centroids of the two
vortices is smaller than a certain critical distance [12].
For two isolated symmetric vortices once the merging is
initiated the final state corresponds to a single symmetric
vortex. However, in the present case we have additional
driving, as well as finite viscosity which can influence the
final state. Thus the final state observed in Fig. 2(c) at
¢t =8000 is one in which the centroids of the two vortices
have rotated by a small amount and a little merging has
occurred. This is a new steady state or fixed point. The
merging of the two corotating vortices is clearly seen on
the contours for the stream function. Also the centroids
of each vortex is no longer at x =1. The centroid of the
left vortex is below x =%, while the centroid of the right
vortex is above x =1. Another interesting aspect of the
secondary instability is seen by comparing the stream
functions in Figs. 2(b) and 2(c). The open streamlines at
the top and bottom indicate the presence of shear flow.
In Fig. 2(c) we observe that the open streamlines in Fig.
2(b) have reconnected causing the coalescence of the two
corotating vortices. Thus there is a reduction and hence
stabilization of the shear flow by the secondary coales-
cence instability. Actually there are four such degenerate
fixed points because of the symmetry in the system. If we
recall that the system is periodic in the y direction, then
pairing an occur between the right vortex and the left
vortex in the adjoining periodic box to the right, or the
left vortex and the right vortex in the same box. This ba-
sically corresponds to a change of the phase in the stream
function. Furthermore there are also two similar states
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for which the shear flow has a negative vorticity.

In Fig. 3 we show the time history of various Fourier
components of the stream function. In Fig. 3(a) we show
the shear flow. The sin(27y/L,) (S) and cos(2my /L))
(C) components are shown in Fig. 3(b). Finally in Fig.
3(c), the sin(4my /L,) and cos(4my /L)) are plotted as a
function of time. Initially the shear flow grows rapidly
and the driven component of the four-vortex decreases
and a “steady state” is reached. However, at t =1500 a
secondary instability, generating the subharmonic com-
ponents corresponding to sin(2my /L)) and cos(2my /L)
components, begins to grow. The pairing instability,
which causes the two vortices to rotate around each oth-
er, generates the subharmonic components. This in turn
suppresses the shear flow. The suppression of the shear
flow causes the four-vortex component to increase.

Thus up to this stage we have encountered seven equi-
librium states. First we have a pure four-vortex state for
p=<5.0X10"3% Then two degenerate states with shear
flow and four-vortex equilibria exist for 3.0X1073
<u<5.0X1073. Finally there are four degenerate states
involving an admixture of shear flow, two-vortex, and
four-vortex equilibria for 2.5X1073<u<3.0X1073,
The various transitions that we have encountered are
equilibrium pitchfork bifurcations. They are shown
schematically in Fig. 4.

Now a decrease in the viscosity to p=2.25X1073
leads to a supercritical Hopf bifurcation. Shown in Fig. 5
are the various Fourier harmonics as a function of time.
In the earlier phase, t <200, the primary instability is
that associated with the generation of shear flow. This is
followed again by a secondary instability causing pairing
of the two corotating vortices. This instability, which
leads to the excitation of k,=2my /L, [Fig. 5(b)], again
causes a strong suppression of the shear flow Fig. 5(a).
This again allows the driven four-vortex component to
increase [Fig. 5(c)] and regenerate the shear flow. The
pairing instability is again initiated and the cycle repeats.
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FIG. 3. For p=2.75X1073, time history of the (a) k,=0
Fourier component, sin (S) and cos (C) components for (b)
k,=2my/L,, and (c) k, =4wy /L, for .
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3.0X1073<u<2.0X1072

of pitchfork bifurcation for

Thus a periodic state emerges, which oscillates between
the tilted four-vortex state and the corotating two-vortex
state. In Fig. 6(a) we show the stream function contours
for the tilted four-vortex state, when the shear flow is
minimum at ¢t =950. The two-vortex state, when the
shear flow is maximum, is shown at ¢ =1050 in Fig. 6(b).
A further decrease in the viscosity to p=2.1216X1073
leads to an increase in the amplitude of the oscillations of
the various Fourier components (Fig. 7). What is
perhaps most interesting to observe is that the shear flow
almost becomes zero, yet remains positive. Also the
period of the oscillation increases from T =200 for
p=2.25X1073 to T =600 for £ =2.1216 X103, The in-
crease in the period occurs because as the shear flow gets
closer to zero during its periodic excursion, the state is
very similar to the initial state, which is a pure four-
vortex state. As a consequence the period of the subse-
quent oscillations begins to approach the period of the
first oscillation, which is 7 =1000. Thus at this point the
oscillation is between almost a pure four-vortex state and
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FIG. 5. For p=2.25X1077, time history of the (a) k,=0
Fourier component, sin (S) and cos (C) components for (b)
k,=2my/L,, and (c) k,=4my /L, of §.
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FIG. 6. Contours of the stream function at (a) t =950 and (b)
1 =1050 for p=2.25X10">.

four-vortex with shear flow.

Perhaps the most dramatic bifurcation is a global bi-
furcation which occurs at £=2.1213X107°. The shear
flow reverses sign. In Fig. 8 we show the various Fourier
harmonics. The significant difference for this case com-
pared to the previous case in Fig. 7 is that the
cos(2my /L) and the sin(2wy /L ) reverse phase. In Fig.
9 we show the stream function at ¢ =600, 800, 960, 1080,
1120, and 1400 as the shear flow reverses. At t =600
[Fig. 9(a)], two tilted corotating vortices with shear flow,
reminiscent of the earlier fixed point [Fig. 2(b)] is seen.
The pairing instability that occurs later causes the two
vortices to rotate around each other, as seen in Fig. 9(b).
The vortex to the right has shifted below x = %, while the
vortex to the left has moved above x =1. This rotation
of the vortex pair leads to stabilization of the shear flow.
As a consequence the driven four-vortex state begins to
reemerge. At ¢ =960 in Fig. 9(c), the four vertical, alter-
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FIG. 7. For p=2.1216 X 1077, time history of the (a) k, =0
Fourier component, sin (S) and cos (C) components for (b)
k,=2my/L,, and (c) k,=4wy /L, of ¢.
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FIG. 8. For p=2.1213X 1077, time history of the (a) k, =0
Fourier component, sin (S) and cos (C) components for (b)
k,=2my/L,, and (c) k,=4my /L, of §.

nately counterrotating vortices have completely reem-
erged. However, the centroids of the second and fourth
vortices are still displaced from x =1. The emerging
four-vortex state, together with the residual two-vortex

pair (characterized by centroids displaced from x Z%),
forces the emerging four-vortex state to have a tilt which
seeds the shear flow with a sign opposite to the original
seed, as clearly seen in Figs. 9(d) and 9(e). As a conse-
quence at t = 1400 [Fig. 9(f)] the state is similar to that at
t =600; however, the shear flow has a vorticity which is
opposite to that in Fig. 9(a). Once again the pairing in-
stability occurs. However, the rotation of the corotating
pair about the common centroid is now in a direction op-
posite to that in Fig. 9(b). As a consequence the emerg-
ing four-vortex state is forced to tilt and provide a seed
for the shear flow instability in the direction similar to
the initial one. This process repeats itself.

This interesting global bifurcation can be schematically
represented by the diagram in Fig. 10. We qualitatively
illustrate it in a two-dimensional phase portrait, although
the dynamics is clearly in a higher-dimensional space.
The horizontal direction corresponds to the shear
Fourier component and the vertical direction to the
sin(27y /L, ) component. Prior to the bifurcation there is
an unstable point at the center consisting of a pure
4wy /L, vortex flow without shear flow, and two stable
limit cycles, with opposite shear flows [Fig. 10(a)]. The
initial four-vortex state follows a trajectory which is at-
tracted to one of the two limit cycles. After the bifurca-
tion [Fig. 10(b)], a new stable orbit encircling the unstable
equilibrium at the center is formed. The initial limit cy-
cle crosses the stable manifold at the center to give rise to
the new limit cycle [which looks like a figure eight in Fig.
10(b)]. Although we have schematically showed the bi-
furcation occurring in two dimensions, this global bifur-
cation occurs in the same way in higher dimension.

Now as we reduce the viscosity, the period of the oscil-
lation keeps decreasing. However, at u=1.0X1073, a
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new phase to the pairing phenomenon occurs, causing the
period of the oscillations to increase. This feature is
more clearly seen at lower viscosity, hence we show this
behavior for u=7.5X10"*. In the early phase, after the
generation of the shear flow, the pairing phenomenon
occurs as usual. This is readily seen on the various
Fourier components in Fig. 11. As the viscosity is re-
duced to u=7.3X10"* the period of the oscillation in-
creases by a factor of 2 as seen in the various Fourier har-
monics in Fig. 12. If one looks at the stream function
[Fig. 13(a)] at ¢t =500, the two corotating vortices have
coalesced significantly. As a consequence the system has

(a)

(b)

()

(d)

(e)

FIG. 9. Contours of the stream function and vorticity at (a)
t =600, (b) t =800, (c) t =960, (d) t =1080, (e) t =1120, and (f)
¢t =1400 for £=2.1213X107>.
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FIG. 10. Schematic phase portrait of the trajectory (a) before
and (b) after global bifurcation.

evolved very close to a state reminiscent of a single island
with shear flow (the difference, however, being the weak
doublet structure at the center of the island due to the
four-vortex driver). Such a state was the final steady
state of the earlier work reported in Refs. [8] and [9].
However, in the present case the “orbit” is in the vicinity
of this fixed point where it spends a significant time.
Thus the presence of this fixed point affects the periodic
orbit. This would suggest that any further reduction in
the viscosity would lead to an inverse Hopf bifurcation,
where a stable periodic orbit would go over to a stable
fixed point with the change of the control parameter.
This is precisely what is observed at p=p,=7.25X107%,
As we decrease the viscosity, the period of the oscilla-
tions keeps increasing. The increase in the period scales
as T=(u—pu,)" %% This fixed point is like the state
shown in Fig. 13. Except for the two small O points and
X point at the center of the coalesced vortices, the gen-
eral flow is similar to the steady-state solutions of the
two-vortex study of Ref. [9], Figs. 6(c) and (d). However,
in this case there are again four such degenerate states
because of the inherent symmetry in the present system.
A second such state would be one with a phase change of
7, but with the same vorticity for the shear flow. Similar-
ly there would be two more states for the shear flow with
vorticity in the opposite direction.

The above-mentioned fixed point survives for a large
window in viscosity until £=4.0X 1075, The fixed point
or steady state becomes unstable and gives rise to a time-
dependent chaotic state which is beyond the scope of the
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FIG. 11. For p=7.50X107*, time history of the (a) k, =0
Fourier component, sin (S) and cos (C) components for (b)
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FIG. 12. For p=7.3X107*, time history of the (a) k,=0
Fourier component, sin (S) and cos (C) components for (b)
k,=2mwy/L,,and (c) k,=2my /L, of ¢.

FIG. 13. Stream function and vorticity for u=7.3X10"* at
t =500. This is also the fixed point at u=7.25X107*.

present work and which can be qualitatively understood
in terms of low-dimensional dynamics.

IV. CONCLUSIONS

We have studied the nonlinear evolution of four alter-
nately counterrotating vortices in a two-dimensional box
with hard-wall free-slip boundary conditions in the x
direction and periodic boundary conditions in the y direc-
tion. This study was motivated by earlier work of Refs.
[8] and [9] to understand the generation of shear flow in
two-dimensional fluids. Also, in recent experiments
[3-7] the interaction of an array of electromagnetically
driven counterrotating vortices has been studied.

As we vary the viscosity from 1072 to 2.5X 107 ° we
observe a series of pitchfork bifurcations from a pure
four-vortex state to a four-vortex state with shear flow,
and finally to a state which is an admixture of a four-
vortex state, a two-vortex state, and shear flow. The first
bifurcation is caused by the shear flow instability studied
earlier [8,9]. The second bifurcation is a consequence of
the pairing instability [10-12]. These transitions are
similar to the ones observed in the experiments.

Beyond this point, decreasing the viscosity gives rise to
a supercritical Hopf bifurcation as the last fixed point
goes unstable. This is followed by a global bifurcation at
©=2.1213X 1073, which leads to periodic self-reversal of
the shear flow. This global bifurcation is perhaps the
most interesting feature of the present studies, because of
the implications for geophysical and solar dynamo, where
periodic reversal of magnetic fields is observed. Studying
the dynamics of the magnetic field as a passive scalar in a
fluid flow with periodic reversal of vorticity would be a
natural extension of the present work.

A further decrease in the viscosity leads to an inverse
Hopf bifurcation as the system evolves to a steady two-
vortex state with shear flow, very similar to the nonlinear
states obtained in the earlier work [8,9]. This state per-
sists for a large window in the viscosity parameter space
until x=4X107>. Then follows a transition to temporal
chaos. The various transitions are shown in Table I.

Many of these features are similar to the various transi-
tions observed in the fluid experiments. However, it is
difficult to make a direct comparison with the experi-
ments because of the following reasons. The viscosity in
our studies changed by a factor of 400 to observe the
transition from the steady-state four-vortex case to the
chaotic phase. However, we need to remind the reader
that the Reynolds number changed only by a factor of 20.
This is because as we went to lower viscosity the strength
of the four-vortex component decreased. This can be
readily seen by examining the magnitude of the four-
vortex components in Figs. 3, 5, 7, 8, and 12, which cor-
respond to decreasing u. Quantitatively we find that
[v™*|2cy,  Thus the Reynolds number R =p™*/
pep V2

The sequence of bifurcations observed in our simula-
tions agrees well with the experiments up to the point
where we get our first supercritical Hopf bifurcation.
The existence of the global bifurcation, during which the
shear flow reverses, was not reported in the experiments.
The very strong symmetry that exists in the equations for
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TABLE I. Transitions to temporal chaos.

Viscosity range

Nonlinear state

©<5.0x1073
3.0X103<u<5.0X1073

2.25X107 < <3.0X1073
p=2.25%X1073
2.1213X1073<p <2.25X 1073
©=2.1213%1073
7.25X107*<pu<2.1213%X 1073
4.00X10°<pu<7.25X107*

1 <4.00X 1075

Four-vortex steady state
Four-vortex

with shear flow steady state
Four-vortex—two-vortex

with shear flow steady state
Supercritical Hopf bifurcation
Periodic state
Global bifurcation

with self-reversal of shear flow
Periodic state with period

T(u—p,) %% and p,=7.25X10"*
Dominantly two-vortex

with shear flow steady state
Quasiperiodic and temporally

chaotic state

allowing shear flow to go either way is the reason why
such self-reversals can occur. If, however, in the experi-
ments there is a bias towards getting shear flow in one
preferred direction, then a special effort has to be made to
make sure that no preferential status for a particular vor-
ticity for the shear flow exists. The transition to chaos
observed by us appears to be a higher-dimensional pro-
cess and not the period-doubling bifurcations observed in
the experiments. A major difference between the numeri-
cal simulations and the experiments is the boundary con-
dition in the y direction. We used periodic boundary
conditions. In the experiment the fluid is free to flow in
the regions beyond the outermost stirring magnets. The
walls containing the fluid are significantly far away from
the stirring region. For the four-vortex case, the
difference in the boundary conditions in the y direction
would be expected to be a major factor in causing the
discrepancy between the numerical results and the exper-
iments. We have done some preliminary work with eight
vortices (for which the boundary conditions would be less
important than the four-vortex case) and have indeed

found bifurcations similar to the experimental ones.
However, there is added dimension of richness to the
eight-vortex case which gives rise to more varieties of bi-
furcations compared to the four-vortex case. In view of
the complexity of the eight-vortex system, we have just
reported the four-vortex study which could at least be
qualitatively understood in terms of the shear flow and
pairing instabilities. Finally the aspect ratio of the vor-
tices used in our numerical work is unity. As stated ear-
lier, this choice of the aspect ratio renders the inviscid
mode stable. Choosing L, <2.0 would make the inviscid
mode, which has a larger growth rate than the viscous
mode, unstable. Of course this could change the various
bifurcations as the viscosity is reduced. These studies
will be pursued in the future.
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